____ _ _ | _ \ _____ _| |__ (_)_ __ | | | |/ _ \ \/ / '_ \| | '_ \ | |_| | (_) > <| |_) | | | | | |____/ \___/_/\_\_.__/|_|_| |_|
Title:Linear Regression Elephant population prediction for 2018 2022
Created:Jul 10th, 2023
Created by: Anonymous
Views: 182
Comments: 1
Username: Anonymous - (Login)
Please note that all posted information is publicly available and must follow our TOS.
import numpy as np from sklearn.linear_model import LinearRegression # Historical data for each state (years and corresponding elephant population) data = { 'Arunachal Pradesh': np.array([2102, 1800, 1607, 1690, 890, 1614]), 'Assam': np.array([5524, 5312, 5246, 5281, 5620, 5719]), 'Meghalaya': np.array([2872, 1840, 1868, 1811, 1811, 1754]), 'Nagaland': np.array([178, 158, 145, 152, 212, 446]), 'Mizoram': np.array([15, 22, 33, 12, 10, 7]), 'Manipur': np.array([50, 30, 12, 11, 12, 9]), 'Tripura': np.array([100, 70, 40, 59, 59, 102]), 'West Bengal (North)': np.array([186, 250, 292, 300, 647, 488]), 'West Bengal (South)': np.array([14, 26, 36, 25, 109, 194]), 'Jharkhand': np.array([550, 618, 772, 624, 688, 679]), 'Odisha': np.array([1750, 1800, 1841, 1862, 1930, 1976]), 'Chhattisgarh': np.array([124, 123, 122, 122, 247, 247]), 'Bihar': np.array([69, 62, 55, 48, 41, 25]), 'Madhya Pradesh': np.array([9, 8, 7, 7, 7, 7]), 'Uttarakhand': np.array([828, 1130, 1582, 1346, 1346, 1839]), 'Uttar Pradesh': np.array([47, 70, 85, 380, 291, 232]), 'Haryana': np.array([9, 8, 7, 7, 7, 7]), 'Himachal Pradesh': np.array([9, 8, 7, 7, 7, 7]), 'Tamil Nadu': np.array([2307, 2971, 3052, 3867, 4015, 2761]), 'Karnataka': np.array([5500, 6088, 5838, 4035, 6068, 6049]), 'Kerala': np.array([3500, 3600, 3850, 6068, 6185, 5706]), 'Andhra Pradesh': np.array([46, 57, 74, 28, 41, 65]), 'Maharashtra': np.array([9, 8, 7, 7, 4, 6]), 'A&N Nicobar Islands': np.array([9, 8, 7, 7, 7, 25]) } # Create a linear regression model for each state models = {} for state, state_data in data.items(): years = np.array([1993, 1997, 2002, 2007, 2012, 2017]) population = state_data model = LinearRegression() model.fit(years.reshape(-1, 1), population) models[state] = model # Predict the elephant population for the years 2018 to 2022 for each state future_years = np.array([2018, 2019, 2020, 2021, 2022]) predictions = {} for state, model in models.items(): predicted_population = model.predict(future_years.reshape(-1, 1)) predictions[state] = predicted_population # Print the predicted population for each state and year for state, predicted_population in predictions.items(): print(f"State: {state}") for year, population in zip(future_years, predicted_population): print(f"Year: {year}, Predicted Population: {int(population)}") print()
1 year ago